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ABSTRACT

\

The nonlinear equations of motion for an incompressible simple fluid,

occupying a fixed bounded container, are formulated on the basis of the

"finite-linear"™ viscoelastic theory for materials with fading memory; this

formal boundary-initial value problem is then viewed as a nonlinear abstract

evolution equation on a certain Hilbert space. It is shown that a linearized

version of this evolution equation is associated with a linear dynamical

system on this Hilbert space, and several stability and asymptotic behavior

results for this linearized problem are proved through the use of Liapunov

stability methods. On the assumption that the original nonlinear evolution

equation also is associated with some dynamical system on the same space, it

is shown that the rest condition of the fluid is stable and all motions are

bounded. The Liapunov function employed for this purpose can be interpreted

as a mechanical energy function for the fluid.

\

Key words:

simple fluid, viscoelastic, fading memory, stability, Liapunov function,

dynamical system.
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1. Introduction

In this paper we study a boundary-initial value problem describing the
motions of an incompressible simple fluid with fading memory, assuming a
"finite-linear" constitutive equation as formulated by Coleman and Noll (1961),
(1964). Stability results for linearized versions of this problem have been
obtained by Craik (1968) and Joseph (1974), who employed spectral analysis
for this purpose; more recently, Slemrod (1976), (1978) has performed a
stability analysis for one such linearized problem by using the ideas of
dynamical systems theory. We refer the reader to Slemrod (1976) for a critique
of the spectral analysis approach.

Here we are primarily interested in the highly nonlinear equations of
motion which result from a careful formulation of the general problem described
above, employing only physically reasonable assumptious. Our mosi important
assumption is that these nonlinear equations do lead to a dynamical system
on an appropriate state space, and we motivate this assumption by also studying
a linearized version of the problem. Although our linearized problem is
closely related to the linear problem considered by Slemrod (1976), (1978),we
are able to show that certain of the stability results for our linearized problem
do carry over to the origiAal nonlinear problem, whereas those of Slemrod (1976),
(1978), Craik (1968), and Joseph (1974) apparently do not. Our approach
here is based entirely on the ideas of dynamical systems theory.

In §2 we formulate the basic equations of motion for a simple incompressible
fluid, based on the '"finite-linear' viscoelastic constitutive equation of
Coleman and Noll (1961). Assuming that for all time t 2 0 (but not t < 0) the

fluid is incompressible and fills a fixed bounded container, we obtain a
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formal boundary-initial value problem with history dependence of possibly
infinite duration. Choosing a state space equipped with a '"fading memory"
norm (see Coleman and Mizel (1966)), we view the formal problem as an abstract
evolution equation on this space; tractability of this problem seems to be highly
dependent on selection of the appropriate state space.

As we are unable to prove that our nonlinear evolution equation leads
to a dynamical system, we consider a linearized version in 83. There we show
that this linear evolution equation does lead to a dynamical system (on the
same space), and we obtain certain results on stability, asymptotic stability,
and exponential decay of motions. Although our linear problem is closely
related to those of Craik (1968), Joseph (1974), and Slemrod (1976), (1978),
we make fewer assumptions regarding the deformation history. Finally, in §4
we assume that, in a certain sense, the original nonlinear problem is related
to a dynamical system; we.then are able to prove that the rest condition is
stable and every motion is bounded in terms of the initial state of the fluid.
OQur results are obtained through the use of a Liapunov function (see Hale (1969))

which we interpret as a mechanical energy function for the fluid.




2. Formulation of the Problem

We consider an incompressible simple fluid occupying a bounded domain
QER3, with Cl-smooth boundary I, for all time t€rt = {0,2). Following the
development of Noll (1958) and Coleman and Noll (1961), (1964), we formulate
in this section a set of nonlinear equations of motion based on the '"finite-
linear'" viscoelastic theory.

For this purpose, consider an arbitrary fluid particle that has position
M= (Tll,T\Z,Tl3) €Q at time t €R+, letting X(T;T,t) = (xl,xz,x3) €R3 and
p(T;M,t) €R+'denote its position and mass density, respectively, at time TER

(note that t 2 0 but T may be negative). The relative deformation gradient

F(T;M,t) is the second order tensor whose components are given by

fij(T;ﬂ,t) = Bjxi(T;ﬂ,t), where Bj = —%; . It is known that
(2.1) p(t;T,t) = p(T;M,t) det F(T;,t)

for all (7,M,t) €R X Q x RY,
Following Coleman and Moll (1961), we denote by C(T;T,t) the relative
right Cauchy-Green tensor with components cij = fkifkj' Here and in

the sequel we employ the convention of summation on repeated indices. Under

the assumption of isotropy and homogeneity (see Coleman and Noll (1961), (1964)),
the basic constitutive equations of the "finite-linear" theory of viscoelasticity
state that, for a compressible simple fluid, the components of the stress

tensor S(T,t) are given by

5,0 = - Feeno) + To'ﬁ(s,p(t;n.cn[ckk(:-s;n,c> -6 das) o

J

~ +
- Jom(s,p(t;ﬂ,t))[cij(t -8;M,t) -6ij]ds , (M,t) EQXR "




where 6ij denotes the Kronecker delta and ;,'E, T are scalar-valued material
functions (see equation 5.18 in Coleman and Noll (1961)). Here we assume

the fluid to be incompressible for T €R+; hence, the density is constant and
we set p(T;M,t) = 1 for T€R+, nea, tER+, without loss of generality. Under

this assumption the above expression for stress must be replaced by

l’“ 3 +
(2.2) sij(ﬂ.t)=°p(Tl,t)5ij-Jom(S)[cij(t-S;T\,t)-6ij3ds , (Mye) EQX R,

where p(T,t) is a constitutively indeterminate quantity and m:R - R is a
material function. We assume that this function satisfies the following

conditions:

s méci@h ne @h
(2.3) b) m is nonnegative and nonincreasing on R ’

c) m(s) >0 for s€[0,r); m(s) = 0 for s €[0,r) ,

where r > 0 may be infinite. This mild assumption follows from the concept
of "fading memory'" as stated by Coleman and Noll (1961).

We remark that the validity of equation (2.2) depends on the assumption
of incompressibility for TER+, but does not presume incompressibility for
T < 0. Furthermore, we note that, by equation (2.1), the assumption

p(T;T,t) = 1 for T €rt implies that

det F(7;T,t) = 1/p(T;M,t) , TER ,

(2.4)

det F(T;M,t) =1 , TERT

for all (T,t) €q x R,
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We assume the fluid container to be fixed in some inertial system, and that L

all particle positions are measured relative to this inertial system. We also 1
assume the body force (per unit mass) at (T,t) to be the gradient Biq(’ﬂ,t) of

a known external potential q:Q X Rt - R. Consequently, the balance law

for linear momentum takes the form 1

aZ
(2.5) —; Xi('f;Tl,t)

+
2 = Biq(ﬂ,t) + ajsij(ﬂ,t) , (M,t) €EQXR ’

1=t

It is convenient to introduce some new notation; let

v(l,t) = & x(1;1,0)

T=t

(2.6) {
U(S,ﬂ,t) = x(t's;nat) = X(C;T\,t) o X(t'S;T\,t) e n >

+ + 5 § das ik . i
for all (s,T,t) €ER° X QX R, For a particle with position NEQR at time t€R", )
v(T,t) represents its velocity at time t and u(s,T,t) + T its position at

time t -s S t. Some straightforward manipulations show that

2

d 3
2.7 — ’ = a. ’ . : ’ )
(2.1 & Xi(T,ﬂ,t) = vj(ﬂ,t) Jvi(T\ £) + 3t vl(ﬂ t)

2.8)  Fu 0 = - v 06, +3u6,00) - 5600,

;i
[-)
(2.9) u, (0,M,6) =0 , == ui(s,n,t)s=0 == v, (Me) ,
(2.10) cij(t-S;Tl,t)- bij - fki(t-S;T\.t)ifkj(t-S;ﬂ,t) - 6ij 3

=d,u (s,T,t):3,u, (s5,T,t) +3u,(s,T,t) +3,u,(s,Tt) ,

for all (s,T,t) ert x ax R+. Since the first of (2.9) implies ajui(O,T],c) =0,

relation (2.4) leads to the condition

o - -‘-—- A ——t '——\\‘_‘\ L -—— —— & y




|
detlajui(s,ﬂ.t) +6,.1 = dee[du,0,1,0) + éij]

detléijl =1

for all t 2 s 2 0, NE€Q; hence, we also have

)

(2.11) 0 (-g—s detlajui(s,'ﬂ,t) + 6ijl) s_0= 35 0;4;(s,T0)

s=0

-3V, (o) , (e €axe™ |

where we have used the second of (2.9).
Upon collecting (2.2), (2.3), (2.5)-(2.11), and making a final physical
assumption that the velocity of the fluid is zero at the boundary I', the

fluid motion is seen to be described by the formal evolution equations

3
(2.12) 5 vy(Me) = - v, (M,£)3,v, (&) - 3,p(T,t) + 3,q(T,t)

T
E a_‘] Jrom(s)[aiuk(s’n’t)'ajuk(sxn:t) + aiuj(s,n,t)

+ajui(s,n,t>lds ; nea

2

(2.13) 3¢ UM = - v (Meld,  + 3,u (s,T,8)]

J
o +
i g ui(S,ﬂ,t) ’ (S’T\) ER" x Q ’
subject to
dv.(t) =0 , MEQ
(2.14) 6, 0,,6) = 0= v (,6) + g=u (5,00 , 7nea

s=0

v,(N,t) =0 , TMET ,

for all t:éﬁf} with prescribed initial data (vi(n,O),ui(s,ﬂ,O)) satisfying (2.14).
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The unknown pressure gradient in (2.12) creates certain difficulties, and
we now employ a well known device for removing this term (see Fujita and Kato
(1964)). Consider the Hilbert space @Ez(ﬂ))3, equipped with the usual inner
product, and let Il : GSZ(Q))3 - (82(0))3 be the orthogonal projection whose

. = 3 @ 3 ~
range R(Il) is the closure in (SZ(Q)) of GE(CO(Q)) 1aivi(ﬂ) =0, MEQ}.
The range of Il is orthogonal to the closure of the set of elements of (£2(Q))3
which are gradients of scalar-valued functions. Writing [l as a symmetric

second order tensor nii and applying it to (2.12), we find that
(2.15) = v (,e) = - T_v (1,0)3.v,(N,t)
ot T£ o L8 R T

r
i nilaj Jr\om('s)[a‘uk(s,'ﬂ,t)°3juk(s,ﬂ,t)+3juz(s,ﬂ,t)]ds ’ neQ

Once a solution (v,u) of equations (2.13)-(2.15) is found, the corresponding
pressure gradient Bip(ﬂ,t) can be recovered through equation (2.12), or
through the equation obtained by applying the projection I -1l to (2.12).

We wish to emphasize two points about our physical assumptions.
It should be noted that conditions (2.14) do not require the fluid to
have always occupied the domain Q in the past; i.e., for s > t 2 0, we

have not assumed that

U(S,'ﬂ,t) o 'ﬂéﬂ ’ neﬂ ’
(2.16)
U(S,T\,C) =0 ’ ner .
Secondly, conditions (2.14) do not require the fluid to have always been

incompressible in the past; i.e., for s > t 2 0, we have not assumed that




(2.17) detlbjui(s,'ﬂ,t) + 6ij\ =1 , MEQ

It is apparent that at least the first of these non-assumptions is physically
important.

We now wish to put (2.13)-(2.15) in the form of an abstract evolution
equation on an appropriate state space. For this purpose, first consider

the linear space S of pairs (v,u) in (Cm(ﬁ))3 X U (PB)3 , where
o 0<B<r

Py = (weC™(Lo,r) X W|w(s,» =0 for (s,H€B,0) x T} ,

such that vE€R(Il) and u(0,M) = 0 = v(T) + -g-; u(s, for all TME€EQ. Recalling
s=0
conditions (2.3) on m(s), where r > 0 might be infinite, we define

lewwdl2 = [ fo v, + [“mterd, o, 0,000, (s, Das} an
(v,u) S Q'Lvi( )vi(T\) + Jom(s) kui(s’ K% (s s (

and we let L denote the Hilbert space obtained by “-HI-— completion of S.

Also, for x = (v,u) €S we define

Nx = (w,z) |,

(2.18) W (D = - T v (D3,
3
- "R jom“)[axuk(s’m'aj“k(s’“) +3u, (s, ]ds
(s, = = v, (D [6,, +3,u,(s,M - u (s,M
2418 G Bl T e kgl S R Lk S

and we consider a metric on S defined by dN(x,ﬁ) Hx - ;E“I + HNx -N;(“I, x,x €8S,
We denote by #(N) the dN - completion of S, and we let N: (8(N) SX) = X be the
operator defined on 8(N) by (2.18). Clearly, ®(N) is dense in X, and the
completeness of (ﬂ(N),dN) implies that N is closed as a (nonlinear) mapping

from X to X,




Within this setting we can replace (2.13)-(2.15) by an abstract evolution

equation on X, given by

x(t)

Nx(t) a.e. t ER -

(2.19)
x €L

o

x(0)

This highly nonlinear evolution equation is very difficult to analyze, even

as to existence and uniqueness of solutions. However, for R = 0, we notice
that equation (2.19) does admit as a solution the rest condition, x(t) = 0

for all t 63%. In the following section we study a linearized version of this

equation and show that it leads to a stable linear dynamical system on X.

——— ,,- &*———— s _\J‘ ———— "




3. A Linearized Problem

We are unable to prove that the nonlinear abstract evolution equation
(2.19) is related to any dynamical system (see Hale (1969)); in $4 we will simply
assume that such a relationship does exist. To suggest the plausibility of
this forthcoming assumption, we now perform an appropriate linearization
of (2.19) (on the same Hilbert space X) and show that the resulting abstract
evolution equation does lead to a (linear) dynamical system on L. We remark
that this Hilbert space is different from the one used by Slemrod (1976), (1978)
for a similar but not identical linear problem.

Our first step is to return to the formal equations (2.13)-(2.15) and
delete all nonlinear terms; hence, conditions (2.14) are retained, while

(2.15) and (2.13) are replaced by

3 rr
(3.1) 3¢ Yy (e} = - “uaj Jom(S)ajuL(s,ﬂ,t)ds s Ne€a ,
(3.2 —a—u(sﬂt)=-v(nt)-a—u(snt) (s,M ert x
y & " O O e ;

for all & GR*Z We continue to assume that m(s) satisfies conditions (2.3).
Recalling the linear space S and the Hilbert space X defined in Section II,

we define, for x = (v,u) €8S,

Ax = (w,z) ,

r
(3.3) wi(ﬂ) = ﬁitaj Jom(s)bjuﬁ(s,ﬂ)ds 3

2, (8,M = - v, (D - S u s,

e g— TN e o~
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]|xHI + }leIII, x€5. We denote

1]

and we consider a norm on S defined by “X“A
by 8(A) the “]]A- completion of S, and we let A: (§(A)<X) = X be the linear
operator defined on §(A) by (3.3). We see that $(A) is dense in L and A is
closed as a linear mapping from X to X.

The formal linear problem (3.1), (3.2), (2.14) leads us to consider

a lipnear abstract evolution equation defined in the Hilbert space X by

Ax(t) |, cert :

x(t)
(3.4)
x(0)

=
XOGS(A) e

We wish to show that (3.4) is related to a linear dynamical system on X, and
that the motions of this dynamical system are (unique) solutions of (3.4)
for xoeﬂ(A).

We recall (see Hale (1969), Yosida (1978)) that a dynamical system

{T(t)}tzo, on a metric space X, is a family of continuous operators
T(t) : L = X such that T(-)x:ﬁ+ = L is continuous, T(0)x = x, and

T(t+h)x = T(t)T(h)x, for all t,h EN+, x€X, The mapping T(:)x :RT = X and

t20
orbit corresponding to the initial state x€X. A subset GEX is said to be

the set Y(x) = T(t)x are called, respectively, the motion and the positive

positive invariant under ‘;T(t)}tz if Y(x) <G for every x€G. A motion T(-)x

0

is said to be stable if, given any € > 0, there exists a neighborhood hé (x)
of radius 6 > 0 such that yéno(x) implies T(t)thc(T(f_)x) for all t€R+;

T(*)x is asymptotically stable if it is stable and T(t)y = T(t)x as t = ®

for all y in some neighborhood of x. Furthermore, we recall that {T(t) }czo

is called a linear dynamical system if X is a Banach space and T(t) : X = X is

a linear operator for every t:€R+; the infinitesimal generator B: (8(B)SX) = X

of such a linear dynamical system is defined by

;r;—d .
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Be ® Lin (T(t)x-x] ,
o ©
where 8(B) is the set of x€X such that this limit exists. If B is the
infinitesimal generator of the linear dynamical system {T(t)]tzo defined
on L, then for every XOEQ(B) the motion T(o)xo is the unique strong solution
of the equation x(t) = Bx(t), t 2 0, for the initial state x(0) = X

With this terminology, we can prove the following result for our linear

abstract evolution equation (3.4).

Theorem 3.1: For m(s) satisfying (2.3), the linear operator A: (8(A)<X) - X
is the infinitesimal generator of a linear dynamical system {T(t)}tzo on X,

with [|T(e)xlly % lixlly for all t Rt x€X.

Proof: As 8(A) is dense in X, for the theorem to be proven it is sufficient
(see Yosida (1978)) to show that -A is “~H1-accretive and that the range
R(I1-A) = L. Using the natural inner product for L, and considering arbitrary

x = (u,v) €E8(A), we see that

r
(x,Ax) = - J‘Qvi(Tl)'ﬂi‘Bj j‘m(s)ajuz(s,ﬂ)ds dQ
0

4 3
JOJOm(S)Bkui(s,ﬂ)-Bk[vi(ﬂ) * ui(s,ﬂ)st an

r
vaNI) 'aj Iom(s)ajul(s,'ﬂ)ds 9]

r r
| akvi(ﬂ)-jom(s)akgi(s,n)ds da

‘Q

r
‘zl'u m(s) & [3,u, (s, 2, (s, ]ds a0
0

- J er'(5)~akui(s,'n)-aku (s,Mds d €0 ;
2 9% 1

hence, -A is accretive.




As -A is accretive, it follows that I - A possesses a bounded inverse
defined on R(I-A). As A is a closed operator, it follows that (I -A)-l is
closed and bounded; hence, R(I -A) = XL if R(I - A) is dense in X. With this

in mind, let (w,z) be a fixed but arbitrary element of the dense set SCX,

and consider the equations

vi(T\) + nuaj dr:)m(s)-ajuz(s,mds = wi(T\) 5
(3.5)

w (s + v, M+ (5T =2 (5D

If these equations can be shown to have a solution (v,u) belonging to 8(4)

we will have shown that R(I - A) ©S, and by the denseness of S in X it will

follow that R(I -A) = X. Formally, the second of equations (3.5) implies that

f ¥ e 8
(3.6) u (s, = - (L-e™Hv (M) + e | ez (5, mag ;
i i o 1
hence, ui(O,'ﬂ) = 0 and %s— ui(s,T\) ls=o = - vi('ﬂ) for all T€Q. Defining

o = X;m(s)(l-e-s)ds s

(3.7)

: T s e
B = (D - TR Iom<s)e 3 Ioe 2, (E,Magas ,

we note that wER(I) N (Cm(-ﬁ))3, and (2.3) implies that 0 < o < ®, Using

(3.6) and (3.7), the first of equations (3.5) becomes

(3.8) v, (W - an”ajajvz(m = Gi(m ‘

13
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It follows from elliptic theory (see Mizohata (1973)) that (3.8) admits a
solution vER (D) N (Cw(f_l))'?‘ such that vi(ﬂ) = 0 for ME€T; inserting this v
in (3.6) we see that u€(Cm([0,1’) xa))3- If r < @, we now can conclude that
(v,u) €8(A). Ifr = ®, let 0 <B < ® and note that, by (3.5) and through

the same argument used in proving that -A was accretive,

i, )12 = Jﬂ{wi(ﬂ)wi(ﬂ) + Jim(s)ajzi(s,ﬂ)-szi(s,'ﬂ)ds} da

= [ {v,(ov,m + ims)ajui(s,m-ajui<s,mds} dn

N

P
Q{nlla rem(s)ajuz(s »,Mds-m . 3 Jom(S)ahuk(S,T\) ds

¢

+ . m(s)9, rL-v

9o ¥ L

o) +—u (s, n)_\ 2, [v m + & ui(S,TD]dsldQ.

Letting B = r = ®, we see that (u,v) €8(a), with || (u,v>\\§ + lla,wif = n<w,z>n§ .

Hence, for any r € (0,®], we have shown that (3.5) has a solution (v,u) € 8(A)

for every (w,z) €35, and thus we conclude that R(I-A) = X. The proof is complete.

Theorem 3.1 shows that our abstract linear evolution equation (3.4) has
a unique solution for every xOES(A). Furthermore, as the dynamical system
{T(t) ]tZO is linear, this theorem implies that all positive orbits are bounded
and every motion is stable.

For r < ® the injection (ﬂ(A),“-lIA)CrI is compact, and it follows that
(1 -A)-1 is a compact operator. 'Hence, if r < ®, we may now conclude that
all positive orbits are precompact (see Dafermos and Slemrod (1973)), and

this fact enables us to prove the following result.

g - T e—— R i B




15

Theorem 3.2: For m(s) satisfying (2.3) with r < ®, every motion of {T(t)}tzo

is asymptotically stable,

Proof: Defining V:X ~ R as V(x) = (x,x), and defining V: X = R by

H(x) = lin inf% [V(T()x) -V(x)] , x€Y ,
£ %0

we see that \'I(x) = 2<x,Ax> for x€ 8(A); therefore, our accretivity argument shows

that

29
\./(x) = ‘!‘ j‘

. Om'(s)-akui(s,'ﬂ)-akui(s,ﬂ)ds d 3 - W(x) S0

for all x = (v,u) €8(A). By Theorem 3.9 of Walker (1976), it follows that

\'l(x) £-W(x)S 0 for all x€X.- Hence, V is a Liapunov function on X (see Hale (1969)).
Conditions (2.3) on m(s) imply that m'(s) < 0 for all s in some nonempty

open set J< (0,r); comnsequently,
{xEIl\.l(x) =0} Cc {(v,u) GI'Jrnakui(s,T\)'akui(s,'ﬂ)dﬂ =0 a.e. s €J}

Using equation (3.4), it is not difficult to see that the largest positive

invariant subset mt of {xeil"l(x) = 0} is mt - {0}. As all positive orbits

are precompact, LaSalle's Invariance Principle (see Hale (1969)) now implies

that T(t)x = 0 as t - @, for every x€X; hence, x = 0 is an asymptotically

stable equilibrium. By the linearity of the dynamical system, it follows that

all motions are asymptotically stable, and the proof is complete.

In two recent papers Slemrod (1976), (1978) has used similar methods to

study a problem very closely related to our formal linear problem (3.1), (3.2),

P, e et
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(2.14). Rather than using the pair (v,u) to represent the state of the system,
/
Slemrod chose the pair \Vs - g; u). He also placed additional restrictions

on the history - corresponding to (2.16) and a linearization of (2.17), namely

u(s,M + TE€EQ | (s,M) ert x 0 &
(3.9) u(s,M =0, (s,MERT X T ,

2,u (s,M =0 , (s, €ERT x O .

These conditions require the '"linearized fluid'" to have always occupied the

container and to have always been incompressible. Using a different space

and topology, Slemrod (1976) was then able to prove that his formal equations

led to a stable linear dynamical system, paralleling our Theorem 3.1l. He

also obtained an asymptotic stability result under the additional assumption

that Irszm(s)ds < @, which does not presume a finite memory length r. Our

Theore: 3.2 assumes r < ®, but does not require the additional assumption (3.9).
Under further assumptions on the behavior of the material function m(s),

Slemrod (1978) proved an exponential stability result. We will now present

a result on exponentiul decay, in our topology, for those initial

states in X that happen to satisfy (3.9). To this end, let G denote the

”’H-I-completion of the set {(v,u) €S](3.9) holds].

Theorem 3.3: Let m(s) satisfy (2.3) and let there exist §2 2 §1 > 0 such that

§1m(s) S -m'(s) S §2m(s) for all sé[O,r) .

o

Then there exist M > 0, ¢ > 0, such that HT(t)xHx £ Me x“I for all

t:ERf, x €G.
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Proof: It is not difficult to see that 4 is positive invariant under

{T(t)]tzo; i.e., Y(x)SEG for x€G. Defining U:XL - R as

. " I
“x”1+ B I v.(M | m(s)u,(s,MdsdQ , x€L ,
vn 1 00 1 .

U(x)

where B > 0, we find that, for x€G@,

O(x) = lim inf% (U(T(e)x) - U(x)]
£N0

WS [ P
= aSJnvi(Tl)vi(T])dQ+ eJnvi('ﬂ) ‘]om (s)ui(s,ﬂ)ds daQ

4
/

] fr o d )( r ? k) 19
+8 JQ\ ﬂom(s) jui(s.Tl) s )l jom(s) jui(s’mds, d

S

¢
+ Jrn'lom' (s)Bjui(s,Tl)-ajui(s,T\)ds - 19

"
where a = J m(s)ds.
0

We wish to show the existence of numbers < e <, >0, € >.0, such that

clnx“i 2 U(x) 2 czllxnz and U(x) $ - 2eU(x) for all xé(}. We first notice

that, by Schwarz' inequality,

r 2 r.r
jom(s)ajui(s,ﬂ)ds S o Jom(s)aj

ui(s,'ﬂ)-ajui(s,T\)ds i

Also, for all z€ (C':(ﬂ))3 it is known that
r
Jr e a2 ] 22, 02z, (e

for some k(Q) < ®; hence, for (v,u) €G,

D I | —
TR — -~ Ry

-

i
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e &
| v.(M! m'(s)u, (s,Mds d
G* Yg 1

e.

2 rr1- ,.rr :
le | m'(s)vi(TDv,(TDds dﬂl -” I m'(s)u, (s,Mu, (s,MNds dQ;
a0 & “do ' : !

T
S m(0)k jﬂvi<n)vi<n)dn.unjom- (13 3, (5, -3 0, (5,0 s a0

r
< m(O)k§2 Iovi(ﬂ)vi(ﬂ)dQ-IQJOm(s)Bjui(s,TD-ajui(s,ﬂ)ds aQ |,

where we have applied Schwarz' inequality. Similarly,for x €@,

" r 2 r
j Ti r .r r .
[.Qvi(“)fo“‘“)“i(s' s | % ok [ v, (v, (D] [ m(s)d 0, (5,3 0, (s, s 40

It then follows that

lueo - lIxiiZ] = @ex/2ldly

U(x) £ - a8 P v, (v, (MdAQ
‘Q i i

/ f % * ¥
+ B(k§2m(0)) \ Jnvi(ﬂ)vi(ﬂ)dﬂ> ( Injom(S)ajui(S.TD-Bjui(s,'ﬂ)ds dﬂ)
~ rl’
4 (§1-orB)'lQJom(s)ajui(s,T\)-ajui(s,'ﬂ)ds @

for all x€G. Choosing B > 0 so small that Bak < 2 and B(kE,m(0) + W’y < 4ok,

DG S

we see that suitable numbers o €y € do exist. As G is: positive invéri'ant,

-2¢€t

it follows that U(T(t)x) S e “°fU(x) for all t €R', x€G; hence, we find that

HT(t)xnis (cl/cz)e-zetﬁx“i , te€rRY | x€g

and the proof is complete.

_.—.."«v——- e—y -W“ i “4— "'7-: .‘"‘- - _‘L’_xm——v mal
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In this section our principal purpose was to prove that the linear abstract
evolution equation (3.4) generates a dynamical system on L. We have gone
beyond this objective, considering stability properties and exponential decay
of motions, in order to provide a basis for comparison with the related

results of Slemrod (1976), (1978).
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4. The Nonlinear Problem

We now return to the nonlinear problem described by the abstract evolution

equation (2.19),

(4.1) x(t) Nx(t) a.e. tER .

x(0) L

o

where N is the closed, densely defined operator described in §2. Questions
regarding existence ané uniqueness of solutions of (4.1) are quite difficult
to resolve, and we are not able to prove that (4.1) is associated with a
dynamical system on X. However, assuming that it is, we shall show in this
section that all positive orbits are bounded and the equilibrium at x = 0
is stable.

In §3 we showed that linearization of the problem led to a dfnamical
system on the Hilbeft space L. This suggests that it is plausible to assume

that the nonlinear problem also is associated with a dynamical system on X,

in the following sense.

Assumption 4.1l: For all sufficiently small A > 0, R(I-\N) = L and Jk = (1 --M*I)-1

exists; moreovef, with J = I, there exists a dynamical system {S(t)} i »

0 t20 °"

" such that J:/nx - S(t)x as n—~ @, for every x€X, t €ﬂ+, the convergence being
uniform on compact subsets of R,

This particular association between the dynamical system {s(t)} and

tz0

the operator N is motivated by considering a backward-difference approximation

of equation (4.1) given by

S S S

et




2L

mt mt ¢ t mt +
G -2 E-D-im B . mmnan s cek

x(0) = xo€1 .

It is seen that for sufficiently large n, depending on t, this equation has a
solution x(t) = Jl:/nxo if R(I-MN) = X and if J)\ = (1I- KN)-]' exists for all
sufficiently small N\ > 0. Under Assumption 4.1, J:/nxo is a Hille-type
approximation of S(t:)xo (see Yosida (1978)).

If wI -N were accretive for some wWER, then the theory of Crandall and
Liggett (1971) would show that Assumption 4.1 holds if and only if R(I - A\N) = X
for all sufficiently small N > 0 (see Yosida (1978)). Unfortunately, wl -N
is not accretive and we are unable to prove the validity of our assumption,
even if R(I-\N) = X,

It is remarkable that, under Assumption 4.1, it is easy to prove that

all positive orbits are bounded and the equilibrium at x = 0 is stable.

Theorem 4.2: For m(s) satisfying conditions (2.3), and under Assumption 4.1,
“S(t)x\lx < ilxllx for all tER_*', x€X, Furthermore, S(t)x = 0 as t = ® if

the positive orbit Y(x) is precompact.

Proof. Defining V(x) = “x”% and

V(x) £ lim inf % v(s(t)x) - v(x)]
t N0

for x€X, we note that for A\ > 0 and x € 8(N),

e ——————— ’ - B —

—

St
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V(x - \Nx) 2 V(x) - 2M(x,Nx)

29

RURRACELS s m(s) 3, (5,13 (5,7 + 3, (s, ) ]ds} da

P C
(x,Nx) = - Jnvi('ﬂ) -ﬂiﬁ‘Lv
[ Uageyo W3 {v. (D + v.(M-d.u, (s, + = u,(s,D} ds &0

: JQ..'O“'(S) ki (S0 Yy o L St e Lol S

-l I v ()9 (v (Mv, (M + j‘rm(s)a u,(s,M+3 u, (s T\)dswr da
24q'j L Al 4 e Tt s e R b

r i
- Jnvl(ﬂ)-aj Jom(s)[aluk(s,'ﬂ)-ajuk(s,ﬂ) + 3juz(s,“)]ds daQ

77
- f akvj Q) .J“

5 m(s)[ajui(s,'ﬂ)-akui(s,'ﬂ) + Bkuj(s,'ﬂ)st an

0

1
2

T
‘J!‘QJ‘ m(s) % [Bkui(s,ﬂ)'akui(s,ﬂ)]ds dQ
0

I
N =

r
' s
Jnj\om (s)Bkui(s,ﬂ)-akui(s,TDds daq = 2 W(x) <0

As 8(N) is dense and Assumption 4.1 is made, Theorem 3.4 of Walker (1979)
shows that V(x) $ - W(x) € 0 for all x€X; consequently, V(S(t)x) S V(x) for
all t€R+, x€X, As in the proof of Theorem 3.2, we also see that the largest
positive invariant set m* in {xEIl\"(x) = 0} is m+ = {0]; hence, if x is

such that Y(x) is precompact, LaSalle's Invariance Principle (see Hale (1969))

implies that S(t)x = 0 as t = @, The proof is complete.

Theorem 4.2 shows that all positive orbits are bounded and the equilibrium
at x = 0 is stable. If all positive orbits could be shown to be precompact,
Theorem 4.2 would imply that x = 0 is globally asymptotically stable.

Although we do not know that all positive orbits are precompact, the last result

———————— W - r»-w—*a—v— — — -_—\"\f — -

—d

Ao
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of Theorem 4.2 does show that there exist no equilibria (steady flows) other
than x = 0 (the rest condition), and it also shows that there are no nontrivial
periodic motions (nonsteady periodic flows).

We remark that the function V(x) = Hxﬂi used in the proof of the foregoing
theorem is a Liapunov function for {S(t)}tzo
Useful Liapunov functions often are extremely difficult to discover for a
highly nonlinear problem, and discovery of a topology suitable for a state
space may be even more difficult. In fact, these difficulties are so inter-
related (see Walker (1976)) that a '"formal'" Liapunov function (for the formal
equation) often is sought a priori, as a means of suggesting a suitable
topology for the state space. This is what led us to set equation (4.1) and
Assumption 4.1 in the particular Hilbert space I: rather than in any other
metric space.

The function V is the only Liapunov function that we have been able to
find for the nonlinear problem. This is in centrast with the linearized
problem of §2, which admits an infinite family of useful Liapunov functions,
;nd leads to a corresponding family of linear dynamical systems on state

spaces differing in their topologies. The linear dynamical system and

Liapunov function of Slemrod (1976) belong to thi;'family,Awhich'can
be defined in terms of the set of linear operators that commute with the
linear operator A of (3.3). However, among all of the functions in this
family, it appears that only the function V employed here is useful with the
original nonlinear problem.

Our Liapunov function V admits a simple physical interpretation. To
demonstrate this point most clearly, we return to the formal problem of §2 and

relax certain of our assumptions. Rather than assuming that vi(ﬂ,t) = 0 for

(see Hale (1969) and Walker (1979)).
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(N,t) €T x R+, let us assume only that fluid can not cross the boundary T of Q;
that is, vi(ﬂ,t)ni(ﬂ) = 0 for (M, ) €T % R+, where n(T)) denotes the unit
outward normal to I'. Let us also consider a general body force field fi(ﬂ,t),
rather than one derived from a potential q(T|,t). If we retain all other

assumptions of §2, formal computations lead to

Pt
%—t- V(x(t) = Jnjom'(S)Bkui(s,ﬂ,t)akui(s,ﬂ,t)ds d + 2P(t)

< 2p(t) , tert |

where P(t) is the external power,

tn

i “
P(0) jﬁfi(n,t)vim,t)dmJrni(n>sij<n,t>vi<n,t>d;

Consequently, we see that % V has the basic property of a "mechanical energy

function'" for the fluid. When all assumptions of 82 are applied,
P(t) = 0 and 5? V(x(t)) S0 for all tERT,

The assumption of '"fading memory'" played a crucial role in our analysis;
however, we remark that conditions (2.3) can be slightly weakened. It is not

difficult to see that we do not actually need n1€C1(R+) and, except for Theorem 3.3,

all of our theorems continue to hold if conditions (2.3) are replaced by

w
a) m :R+ -+ R is integrable, with 0 < J m(s)ds < ® |
0
(4.2) b) m is nonnegative and nonincreasing on R g
c) m(s) >0 for s€{0,r) ; m(s) =0 for s B16,5)

where r > 0 may be infinite.

B _
P —— w-—-m'—-——-—-.-—v'W '\,\\M—-‘
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